

Planning Work Execution: 90 Day Rolling Schedule, Plan of the Week, and Plan of the Day

Scott Wallace

December 5, 2000

Planning Work Execution: 90 Day Rolling Schedule, Plan of the Week, Plan of the Day

Performing Work Within Controls

ISM Core Functions

- 1. Define the Scope of Work
- 2. Analyze the Hazards
- 3. Develop and Implement Hazard Controls
- 4. Perform Work within Controls
- 5. Provide Feedback and Continuous Improvement

Planning Work Execution: 90 Day Rolling Schedule, Plan of the Week, Plan of the Day

Balance Priorities

ISM 8 Guiding Principles

- 1. Line Management Responsible for Safety
- 2. Clear Roles and Responsibilities
- 3. Competence Commensurate with Responsibilities
- 4. Balanced Priorities
- 5. Identification of Safety Standards / Requirements
- 6. Hazard Controls Tailored to Work Being Performed
- 7. Operations Authorization
- 8. Employee Involvement

Planning Work Execution: 90 Day Rolling Schedule, Plan of the Week, Plan of the Day

Operations Authorization

ISM 8 Guiding Principles

- 1. Line Management Responsible for Safety
- 2. Clear Roles and Responsibilities
- 3. Competence Commensurate with Responsibilities
- 4. Balanced Priorities
- 5. Identification of Safety Standards / Requirements
- 6. Hazard Controls Tailored to Work Being Performed
- 7. Operations Authorization
- 8. Employee Involvement

Scope of Work

Research and Development

Manage and Grow a National Environmental and Engineering Lab

Specific Manufacturing Capability

Produce Armor Plating for Army

Infrastructure

Manage Infrastructure Associated with 890 square mile INEEL Site (Facilities / Transportation, etc.)

Advanced Test Reactor

Spent Nuclear Fuel

Operator Research Reactor

Long-Term Storage

Receive and Process Spent Fuel to

Waste Management

Prepare, Store, and Transport **Various Legacy Wastes**

Environmental Restoration

- Soil / Groundwater Remediation
- **D&D** of Facilities

High Level Waste

Manage Disposal of Legacy HLW

I. Primary Idaho Nuclear Technology and Engineering Center (INTEC) Missions

- Spent Nuclear Fuel Management
 - Safe receipt, handling, and interim storage
 - Preparation for final disposition

Test Area North

I. Primary Idaho Nuclear Technology and Engineering Center (INTEC) Missions

- High Level Waste, Liquid and RAD Waste Management
 - Safe management of liquid and solid waste
 - Preparation for final disposition

I. Primary Idaho Nuclear Technology and Engineering Center (INTEC) Missions

 Phaseout/Transition/Decontamination and Decommissioning of Reprocessing and Other Facilities

Research and Development/Technology
 Transfer for Waste Processing and Spent
 Nuclear Fuel Management
 Idaho Nuclear Technology

II. INTEC History and Background

Idaho Nuclear Technology and Engineering Center

- 1949 Began Original Construction
- 1953 Began Spent Fuel Reprocessing
- 1963 Began High Level Waste Calcining
- > 1982 Calciner Upgrade
- 1984 Fuel Storage Upgrade
- > 1986 Fuel Dissolution Upgrade
- 1992 Fuel Reprocessing Terminated
- 1993 Court Order Focusing on Restoration of Fuel Storage Vulnerabilities
- 1995 Settlement Agreement Department of Energy,
 State of Idaho, and Department of Navy
- 2000 Calciner Shutdown and in Undetermined Status

III. INTEC Issues and Challenges

- Multiple Missions and Programs
- Aging Facility
- Static or Declining Budgets
- Changing Priorities
- Specialized Work Force
- Work Activity Conflicts
- New Processes

IV. Work Flowdown to Develop Work Window, Plan of Week, and Plan of Day

 Detailed Work Plan Provides Funding Authorization and is the Derivative Schedule for all INTEC Schedules

- INTEC Detailed Scheduling Completes for Work Windows
 - Identify Program Work Interdependencies
 - Refine Resource and Skill Mix Issues
 - Resource Level Based on Resource Availability
 - Plan of the Week is a Direct Extraction of the Work Window
 - POW is Aligned to Resource Availability
 - Schedule and Resource Conflicts are Mitigated
 - Operations Management Participates and Concurs in the POW Work Package, Work Order, and Material Status are Checked
 - Plan of the Day is an Extraction of the POW
 - Work is Authorized by the Operations Managers
 - Alternate Work is Approved
 - Final Assessment of Resource Availability Occurs
 - Only work on POD is Authorized for Performance
 - Status and Progress is Maintained at POW/POD Level and Relationship to Work Window and the DWP is Maintained

Adopted Schedule Coding

PROGRAMS

Level IV 3-Week Rolling

Plan of the Day (POD)

Integration of Schedules

INTEC Integrated Scheduling Process

INTEC Extraction from DWP and Completion of Planning and Scheduling

INEEL

V. ISM and Scheduling Process Relationship (Requirements Flowdown)

- Work Authorization and Scheduling Procedurally Linked and Flowdown from ISMS Requirements and Implementing Procedures
 - All Work Formally Approved and Reviewed for Hazards Using a Graded Approach
 - Initial Work Authorization by the Detailed Work Plan
 - Plan of Day Ensures Work is Ready in all Respects

V. ISM and Scheduling Process Relationship (Requirements Flowdown)

- Balancing Priorities (Guiding Principal 4)
 - Resource Leveling in Planning Evolutions
 - Conflicts Identified and Resolved as part of Planning
- Operation Authorization Established Through POW/POD Process (Guiding Principal 7)
- Work Scope Authorization Established in Process

(Core Function 1 & 4)

VI. Benefits of Process

- Integrated Schedules Assist in Balancing Priorities and Resolving Conflicts
- Visibility and Communication of Work Scope
- Work Authorization Linked to ISMS and Business Process Requirements

VI. Benefits of Process (Continued)

- Feedback in Program Performance Measurements for both Cost and Schedule (Trend and Baseline Control in Place and Reflected in INEEL Scheduling Process)
- Alternate Work Flexibility

VII. Summary

- Process Conforms With Relevant ISMS Core Functions & Guiding Principals
- Aligns the Schedule With Business Process
- ISMS Level II and EH-22 Review Confirmed Strength of Process

